Automatic Essay Grading With Probabilistic Latent Semantic Analysis
نویسندگان
چکیده
Probabilistic Latent Semantic Analysis (PLSA) is an information retrieval technique proposed to improve the problems found in Latent Semantic Analysis (LSA). We have applied both LSA and PLSA in our system for grading essays written in Finnish, called Automatic Essay Assessor (AEA). We report the results comparing PLSA and LSA with three essay sets from various subjects. The methods were found to be almost equal in the accuracy measured by Spearman correlation between the grades given by the system and a human. Furthermore, we propose methods for improving the usage of PLSA in essay grading.
منابع مشابه
Comparison of Dimension Reduction Methods for Automated Essay Grading
Automatic Essay Assessor (AEA) is a system that utilizes information retrieval techniques such as Latent Semantic Analysis (LSA), Probabilistic Latent Semantic Analysis (PLSA), and Latent Dirichlet Allocation (LDA) for automatic essay grading. The system uses learning materials and relatively few teacher-graded essays for calibrating the scoring mechanism before grading. We performed a series o...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملOn the Effectiveness of Using Syntactic and Shallow Semantic Tree Kernels for Automatic Assessment of Essays
This paper is concerned with the problem of automatic essay grading, where the task is to grade student written essays given course materials and a set of humangraded essays as training data. Latent Semantic Analysis (LSA) has been used extensively over the years to accomplish this task. However, the major limitation of LSA is that it only retains the frequency of words by disregarding the word...
متن کاملApplying Part-of-Seech Enhanced LSA to Automatic Essay Grading
Latent Semantic Analysis (LSA) is a widely used Information Retrieval method based on " bag-of-words " assumption. However, according to general conception, syntax plays a role in representing meaning of sentences. Thus, enhancing LSA with part-of-speech (POS) information to capture the context of word occurrences appears to be theoretically feasible extension. The approach is tested empiricall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005